Note

Formation of a hexoseptanose by unusual rearrangements of a furanoid glycal

RENÉ CSUK*, BRIGITTE I. GLÄNZER, ALOIS FÜRSTNER, HANS WEIDMANN, Institute of Organic Chemistry, Technical University Graz, A-8010 Graz (Austria)

AND VIKTOR FORMACEK

Bruker Analytische Messtechnik, Am Silberstreifen, D-7512 Rheinstetten 4 (Federal Republic of Germany)

(Received November 18th, 1985; accepted for publication, July 11th, 1986)

During recent investigations on the scope of a new glycal synthesis¹, an unusual isomerisation of 3,6-anhydro-5-deoxy-1,2-O-isopropylidene- α -D-xylo-hex-5-enofuranose² (1) was observed; 1 was described previously as the sole product of base-promoted eliminations of 3,6-anhydro-5-deoxy-5-iodo-1,2-O-isopropylidene- β -L-idofuranose and 3,6-anhydro-1,2-O-isopropylidene-5-O-toluene-p-sulfonyl- α -D-glucofuranose² (4). When 1,2-O-isopropylidene-5-O-toluene-p-sulfonyl-1,4:6,3- α -D-glucohexodialdodifuranos- α , β -6-yl chloride³ (2) was treated with laminar Zn/Ag-graphite¹, the expected glycal 1 was found to be admixed with the isomeric 3,6-anhydro-5-deoxy-1,2-O-isopropylidene- α -D-erythro-hex-4-enofuranose (3). Heating of this mixture in various solvents or, more rapidly, its treatment with potassium tert-butoxide in methyl sulfoxide at ambient temperature gave 3 exclusively, proving its unexpected thermodynamic and kinetic stability. This result coupled with a similar, but far less-stable carbohydrate-derived anti-Bredt-product⁴, called for a re-examination of our earlier work².

In order to demonstrate whether 3 was generated directly or by isomerisation following the formation of glycal 1, 4 was treated with an equimolar amount of potassium *tert*-butoxide in methyl sulfoxide at ambient temperature. Quenching of this reaction immediately after 4 had disappeared led only to 1 as a low-melting product, differing markedly from 3 in all physical properties. However, with excess of reagent under similar conditions, the rapid elimination reaction of 4 was followed immediately by isomerisation, giving 3 exclusively.

When a solution of 3 or 1 (the latter requiring significantly prolonged reaction time) in dichloromethane containing glacial acetic acid was stored at room temperature, a second, skeletal rearrangement occurred with the quantitative formation of 5. This unprecedented reaction, which can be anticipated to be a

236 NOTE

$$R^{1} \quad R^{2} \quad OTS$$

$$2 \quad R^{1}, \quad R^{2} = H, \quad CI$$

$$4 \quad R^{1} = R^{2} = H$$

$$OOO$$

$$OAC$$

prototropic rearrangement reaction of a furanoid glycal 1, followed by a ringexpansion reaction of 3 as shown, called for a complete elucidation of the structure of 5.

The 400-MHz ¹H-n.m.r. spectrum of 5 was too complex for determination of the proton coupling pattern, and 2D-homonuclear shift-correlation spectroscopy (COSY)⁵ was applied (Fig. 1). By a pulse sequence $(T_R - \pi/2 - \tau - t_1 - \pi/2 - \tau - FID)_{32}$, the ¹H-¹H-connectivities through vicinal couplings could be established and supported by homonuclear decoupling experiments. On irradiation of the doublet at δ 6.23, the triplet at δ 4.39 collapsed, which, in turn, on irradiation influenced both the resonances at δ 6.23 and 3.98. According to well established rules, the doublet at δ 6.23 was assigned to H-1, the triplet at δ 4.39, as a result of decoupling experiments and the COSY-spectrum, to H-2, and the third signal of this coupling pathway at δ 3.98 to H-3. The $J_{2,3}$ value of 2.7 Hz clearly indicated H-2,3 to be *cis*. D-Glucoseptanose derivatives⁶ show $J_{2,3}$ values in the range of 7.0-8.9 Hz, whereas, for a D-alloseptanose of similiar conformation to 5, a $J_{2,3}$ value of 2.0 Hz was reported⁷, and there is little doubt about the correct configurational assignment to 5.

A COSY-experiment, using a modified pulse-sequence with an additional pre-evolution and pre-acquisition delay with phase-cycling for quadrature detection in both dimensions⁸, led to detection of the small 5J couplings between H-1 and the isopropylidene methyl protons⁹. This group is thus located at positions 1 and 2. The complex multiplets at δ 4.1–4.35 and 2.4–2.5, exhibiting the coupling pattern of an AA'XX' system, were attributed to H-6,6' and H-5,5', respectively. Shifts and coupling constants of all protons of 5, resulting from the analysis of a 400-MHz and a 2D-homonuclear J-resolved spectrum¹⁰, were ascertained by a spectrum simulation using the PANIC-sequence (Table I).

 13 C-N.m.r. spectroscopy, including a 13 C-n.m.r.-DEPT-sequence 11 , revealed a carbonyl carbon (δ 212.89) and two methylene carbons in 5, strongly indicating a

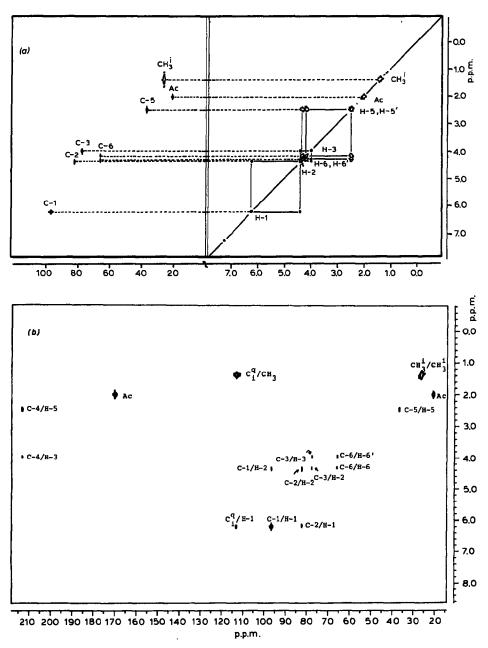


Fig. 1. (a) Combination of the COSY-spectrum (right) and the heteronuclear shift correlation (left) of 5; (b) COLOC-spectrum of 5; crosspeaks indicate heteronuclear coupling (indices or superscripts "i" stand for "of isopropylidene").

TABLE I N.M.R. DATA (δ SCALE, J IN Hz) FOR 5

Atom	δ	¹ J _{C,H}	Atom	δ	J	
C-1	96.83	183.3	H-1	6.23	J_1 ,	2.7
C-2	82.35	151.7	H-2	4.39	$J_{2.3}$	2.7
C-3	<i>7</i> 7.65	146.4	H-3	3.98	$J_{5.5'}$	7.8
C-4	212.89		H-5	2.46	$egin{array}{c} J_{1,2} \ J_{2,3} \ J_{5,5'} \ J_{5,6} \ \end{array}$	8.1
C-5	36.89	133.7	H-5'	2.47	J _{5',6}	6.0
C-6	65.86	150.3	H-6	4.32	$J_{5,6'}$	7.6
			H-6'	4.17	$J_{5',6'}^{\circ,\circ}$	7.7
CH ₃ ^a	26.26		CH ₃ ª	1.47	$J_{6,6'}$	9.1
CH ₂	26.65		CH₃⁴	1.51	0,0	
C.ª	113.24		3			
CH.⁴	20.95		CH_3^b	2.10		
CH ₃ ^a C _q ^a CH ₃ ^b CO ^b	170.11		J			

^aCMe₂ group. ^bAcO-3.

3-O-acetyl-5-deoxy-1,2-O-isopropylidene- α -D-erythro-hexoseptanos-4-ulose structure. When a 13 C-n.m.r. spectrum of 5 was obtained under conditions of gated proton decoupling with switching off of the proton broad-band-decoupling irradiation immediately before the free-induction-decay was accumulated, it also indicated position 4 for the carbonyl group and contained all of the 1 H- 13 C-couplings, whilst retaining most of the intensity enhancement associated with the n.O.e. The $J_{\text{C-1,H-1}}$ value of 183.3 Hz strongly supports the α -configuration. Since a 2D 1 H- 13 C-heteronuclear shift correlation for small couplings 12 only allows

TABLE II

N.M.R. DATA (δ SCALE, J IN Hz) FOR 1 AND 3

Atom	1	3	Atom	1	3
C-1	105.62 ^b	111.67	H-1	5.84	5.97
C-2	85.01°	87.80⁵	H-2	4.71	4.68
C-3	85.14 ^c	82.80 ^b	H-3	4.86	5.01
C-4	87.74°	156.01	H-4	5.39	
C-5	102.63b	97.88	H-5	5.20	4.92
C-6	150.48	77.40	H-6	6.46	4.56/4.77
CH ₃ ^a	27.21	27.86	$J_{1,2}$	3.9	5.2
CH₃⁴	27.92	28.38	$J_{2,3}^{1,2}$	_	3.3
C _q	113.03	115.76	$J_{3,4}^{2,2}$	5.9	
			$J_{4,5}$	2.7	_
			J _{5,6(6')}	2.7	2.7/1.4
			$J_{6,6'}^{\circ,(0)}$	_	11.2
			$J_{3,6(6')}$	_	3.6/4.9

^aCMe₂ group: δ 1.35 and 1.50 for CH₃ of 1, and δ 1.47 and 1.54 for CH₃ of 3 ($^{5}J_{\text{H-1,Me}}$ 0.9 Hz). b,c Assignments may be reversed.

NOTE 239

detection of $J_{C.4,H.3}$, a COLOC-pulse-sequence¹³ was performed, clearly showing the couplings between C-4 and H-3,5,5'. The difference between these two experiments can be attributed to the different magnitudes of ${}^{n}J_{C,H}$ and ${}^{n}J_{H,H}$, influencing the intensity of the crosspeaks in the heteronuclear correlation experiment, whereas the COLOC-experiment is less difficult in selecting the experimental parameters.

The unambiguous ¹³C assignments, obtained from a "normal" 2D ¹H-¹³C-heteronuclear shift-correlation experiment¹⁴, accorded well with the results of the COLOC and the long-range hetero-correlation experiments. The ¹³C- and ¹H-data are listed in Tables I and II.

Thus, 3,6-anhydro-5-deoxy-1,2-O-isopropylidene- α -D-xylo-hex-5-enofuranose (1) is invariably formed in either base-promoted eliminations, exemplified by 4, or under the conditions of a new glycal synthesis¹. Compound 1 irreversibly isomerises either thermally or, considerably faster, with strong base, to give 3.

As unambiguously demonstrated by the n.m.r. analysis, both isomers 3 and 1 (by way of 3) undergo an unusual skeletal rearrangement, giving the septanose derivative 5. A tentative mechanism for this reaction is depicted in the annexed scheme.

EXPERIMENTAL

General. — Melting points are uncorrected (Tottoli), optical rotations were measured with a Perkin-Elmer 141 polarimeter, and n.m.r. spectra for solutions in CDCl₃ (internal Me₄Si) were recorded with Bruker WH-90, AC-250, and WM-400 instruments. T.l.c. was performed on silica gel (Merck, 5554).

3,6-Anhydro-5-deoxy-1,2-O-isopropylidene- α -D-xylo-hex-5-enofuranose (1). — To a solution of 4^{15} (3.5 g, 10 mmol) in anhydrous methyl sulfoxide (10 mL) was added potassium tert-butoxide (1.2 g, 10 mmol) in 5 portions with stirring at ambient temperature under argon. After 4-6 min, when 4 had been consumed, ether (250 mL) was added, the mixture was extracted twice with water, and the organic layer was dried and concentrated. Chromatography (toluene-ethyl acetate, 3:1) of the residue on a short column of silica gel yielded 1 (1.3 g, 71.3%), m.p. 29-31°, $[\alpha]_D^{20}$ +9.5° (c 3.4, chloroform).

Anal. Calc. for $C_9H_{12}O_4$: C, 58.69; H, 6.57. Found: C, 58.61; H, 6.63. When 1,2-O-isopropylidene-5-O-toluene-p-sulfonyl-1,4:6,3- α -D-glucohexo-

240 NOTE

dialdodifuranos- α,β -6-yl chloride (0.8 g, 2.1 mmol) [obtained³ from 1,2-O-isopropylidene-5-O-toluene-p-sulfonyl-1,4:6,3- α -D-hexodialdodifuranose¹6 as an unstable oil (85%), the structure of which was confirmed by n.m.r. spectroscopy] in anhydrous tetrahydrofuran (5 mL) was added to a suspension of 4 mmol of Zn/Ag-graphite¹ (0.1 molar ratio) in tetrahydrofuran (15 mL) and the mixture was boiled under reflux for 4 h; the usual work-up¹ gave an inseparable, oily 4:1 mixture (0.24 g, 63%) of 3 and 1. The physical data reported² for 1 are those for its isomer 3.

3,6-Anhydro-5-deoxy-1,2-O-isopropylidene- α -D-erythro-hex-4-enofuranose (3). — A solution of 1 (0.9 g, 4.9 mmol) in anhydrous methyl sulfoxide (3 mL) containing potassium tert-butoxide (0.2 g, 1.8 mmol) was kept at ambient temperature for 20 min and then worked-up as described for 1, to yield 3 (0.7 g, 77.4%), m.p. 77-78°, $[\alpha]_D^{20}$ +68° (c 1, chloroform).

Anal. Calc. for C₉H₁₂O₄: C, 58.69; H, 6.57. Found: C, 58.62; H, 6.61.

Prolonged heating of the mixture of 1 and 3 in toluene, chloroform, or dichloromethane, or directly from 4 employing a 50% excess of potassium *tert*-butoxide as described above, also gave 3.

3-O-Acetyl-5-deoxy-1,2-O-isopropylidene- α -D-erythro-hexoseptanos-4-ulose (5). — A solution of 3 (0.8 g, 4.3 mmol) in anhydrous dichloromethane (25 mL) containing glacial acetic acid (0.4 g, 6.64 mmol) was kept at ambient temperature until t.l.c. showed the complete disappearance of 3. The solvents were evaporated under reduced pressure, and column chromatography (toluene-ethyl acetate, 15:1) of the residue then gave 5 (0.7 g, 66.7%), m.p. 80-82°, $[\alpha]_D^{20}$ +173° (c 1.3, chloroform), R_F 0.18 (cf. 0.42 for 3).

Anal. Calc. for C₁₁H₁₆O₆: C, 54.09; H, 6.60. Found: C, 54.31; H, 6.72.

Compound 5 was obtained from 1 under the same conditions but with a prolonged reaction time.

ACKNOWLEDGMENTS

We thank Mrs. M. Mörtter (Bruker Analytische Messtechnik) for recording the 250-MHz spectra, Dr. V. Sinnwell (University of Hamburg) for the 400-MHz spectrum, Dr. B. Coxon (National Bureau of Standards) for providing an extended PANIC-sequence for spectra simulation, and the Fond zur Förderung der Wissenschaftlichen Forschung (Vienna) for financial support (project No. 5565).

REFERENCES

- R. CSUK, A. FÜRSTNER, B. I. GLÄNZER, AND H. WEIDMANN, J. Chem. Soc., Chem. Commun., (1986) 1149–1150.
- K. DAX, A. P. RAUTER, A. E. STÜTZ, AND H. WEIDMANN, Justus Liebigs Ann. Chem., (1981) 1768– 1773.
- 3 S. HANESSIAN, M. M. PONPIPOM, AND P. LAVALLEE, Carbohydr. Res., 24 (1972) 45-56.
- 4 J. THIEM AND H. LÜDERS, Justus Liebigs Ann. Chem., (1985) 2151-2164.
- 5 L. D. HALL AND J. K. SAUNDERS, J. Am. Chem. Soc., 102 (1980) 5703-5711.
- 6 J. D. STEVENS, Austr. J. Chem., 28 (1975) 525-527.
- 7 K. HEYNS, R. NESTE, AND M. PAAL, Tetrahedron Lett., (1978) 4011-4014.

241

- 8 A. BAX AND R. FREEMAN, J. Magn. Reson., 45 (1981) 177-181; R. CSUK, N. MÜLLER, AND H. WEIDMANN, Monatsh. Chem., 115 (1984) 93-99.
- 9 J. C. JOCHIMS AND G. TAIGEL, Chem. Ber., 103 (1970) 448-462.
- 10 L. D. HALL AND S. SUKUMAR, J. Am. Chem. Soc., 101 (1979) 3120-3121.
- 11 D. M. DODDRELL, D. T. PEGG, AND M. R. BENDALL, J. Magn. Reson., 48 (1982) 323-327.
- 12 G. A. MORRIS AND L. D. HALL, J. Am. Chem. Soc., 103 (1981) 4703-4711.
- 13 H. KESSLER, C. GRIESINGER, AND J. LAUTZ, Angew. Chem., 96 (1984) 434-435.
- 14 G. BODENHAUSEN AND R. FREEMAN, J. Magn. Reson., 28 (1977) 471-476.
- 15 H. OHLE, L. V. VARGHA, AND E. ERLBACH, Ber., 61 (1928) 1211-1216.
- 16 T. Irimajiri, H. Yoshida, T. Ogata, and S. Inokawa, Bull. Chem. Soc. Jpn., 43 (1970) 3243–3245.